首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   49篇
  2021年   5篇
  2020年   3篇
  2019年   2篇
  2017年   2篇
  2016年   5篇
  2015年   8篇
  2014年   9篇
  2013年   6篇
  2012年   7篇
  2011年   8篇
  2010年   13篇
  2009年   11篇
  2008年   11篇
  2007年   11篇
  2006年   6篇
  2005年   9篇
  2004年   10篇
  2003年   11篇
  2002年   6篇
  2001年   11篇
  2000年   8篇
  1999年   7篇
  1998年   7篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1992年   1篇
  1991年   5篇
  1990年   3篇
  1989年   3篇
  1988年   5篇
  1987年   1篇
  1986年   2篇
  1983年   1篇
  1982年   1篇
  1981年   6篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1968年   1篇
排序方式: 共有224条查询结果,搜索用时 437 毫秒
61.
The Golgi-associated retrograde protein (GARP) complex mediates tethering and fusion of endosome-derived transport carriers to the trans-Golgi network (TGN). In the yeast Saccharomyces cerevisiae, GARP comprises four subunits named Vps51p, Vps52p, Vps53p, and Vps54p. Orthologues of the GARP subunits, except for Vps51p, have been identified in all other eukaryotes. A yeast two-hybrid screen of a human cDNA library yielded a phylogenetically conserved protein, Ang2/Fat-free, which interacts with human Vps52, Vps53 and Vps54. Human Ang2 is larger than yeast Vps51p, but exhibits significant homology in an N-terminal coiled-coil region that mediates assembly with other GARP subunits. Biochemical analyses show that human Ang2, Vps52, Vps53 and Vps54 form an obligatory 1:1:1:1 complex that strongly interacts with the regulatory Habc domain of the TGN SNARE, Syntaxin 6. Depletion of Ang2 or the GARP subunits similarly impairs protein retrieval to the TGN, lysosomal enzyme sorting, endosomal cholesterol traffic¤ and autophagy. These findings indicate that Ang2 is the missing component of the GARP complex in most eukaryotes.  相似文献   
62.
The mammalian retromer complex consists of SNX1, SNX2, Vps26, Vps29 and Vps35, and retrieves lysosomal enzyme receptors from endosomes to the trans-Golgi network. The structure of human Vps26A at 2.1-A resolution reveals two curved beta-sandwich domains connected by a polar core and a flexible linker. Vps26 has an unpredicted structural relationship to arrestins. The Vps35-binding site on Vps26 maps to a mobile loop spanning residues 235-246, near the tip of the C-terminal domain. The loop is phylogenetically conserved and provides a mechanism for Vps26 integration into the complex that leaves the rest of the structure free for engagements with membranes and for conformational changes. Hydrophobic residues and a glycine in this loop are required for integration into the retromer complex and endosomal localization of human Vps26, and for the function of yeast Vps26 in carboxypeptidase Y sorting.  相似文献   
63.
The delivery of mannose 6-phosphate receptors carrying lysosomal hydrolases from the trans-Golgi network (TGN) to the endosomal system is mediated by selective incorporation of the receptor-hydrolase complexes into vesicular transport carriers (TCs) that are coated with clathrin and the adaptor proteins, GGA and AP-1. Previous electron microscopy (EM) and biochemical studies have shown that these TCs consist of spherical coated vesicles with a diameter of 60-100 nm. The use of fluorescent live cell imaging, however, has revealed that at least some of this transport relies on a subset of apparently larger and highly pleiomorphic carriers that detach from the TGN and translocate toward the peripheral cytoplasm until they meet with distally located endosomes. The ultrastructure of such long-range TCs has remained obscure because of the inability to examine by conventional EM the morphological details of rapidly moving organelles. The recent development of correlative light-EM has now allowed us to obtain ultrastructural 'snapshots' of these TCs immediately after their formation from the TGN in live cells. This approach has revealed that such carriers range from typical 60- to 100-nm clathrin-coated vesicles to larger, convoluted tubular-vesicular structures displaying several coated buds. We propose that this subset of TCs serve as vehicles for long-range distribution of biosynthetic or recycling cargo from the TGN to the peripheral endosomes.  相似文献   
64.
A subset of intracellular transmembrane proteins such as acid-hydrolase receptors, processing peptidases and SNAREs, as well as extracellular protein toxins such as Shiga toxin and ricin, undergoes 'retrograde' transport from endosomes to the trans-Golgi network. Here, we discuss recent studies that have begun to unravel the molecular machinery that is involved in this process. We also propose a central role for a 'tubular endosomal network' in sorting to recycling pathways that lead not only to the trans-Golgi network but also to different plasma-membrane domains and to specialized storage vesicles.  相似文献   
65.
The adaptor protein (AP) complexes AP-1, AP-2, and AP-3 mediate coated vesicle formation and sorting of integral membrane proteins in the endocytic and late exocytic pathways in mammalian cells. A search of the Drosophila melanogaster expressed sequence tag (EST) database identified orthologs of family members mammalian medium (μ) chain families μ1, μ2, and μ3, of the corresponding AP complexes, and δ-COP, the analogous component of the coatomer (COPI) complex. The Drosophila orthologs exhibit a high degree of sequence identity to mammalian medium chain and δ-COP proteins. Northern analysis demonstrated that medium chain and δ-COP mRNAs are expressed uniformly throughout fly development. Medium chain and δ-COP genes were cytologically mapped and the μ3 gene was found to localize to a region containing the pigmentation locus carmine (cm). Analysis of genomic DNA of the cm 1 mutant allele indicated the presence of a large insertion in the coding region of the μ3 gene and Northern analysis revealed no detectable μ3 mRNA. Light microscopy of the cm 1 mutant showed a reduction in primary, secondary, and tertiary pigment granules in the adult eye. These findings provide evidence of a role for μ3 in the sorting processes required for pigment granule biogenesis in Drosophila. Received: 7 June 1999 / Accepted: 4 July 1999  相似文献   
66.
Furin is a subtilisin-related endoprotease which processes a wide range of bioactive proteins. Furin is concentrated in the trans-Golgi network (TGN), where proteolytic activation of many precursor proteins takes place. A significant fraction of furin, however, cycles among the TGN, the plasma membrane, and endosomes, indicating that the accumulation in the TGN reflects a dynamic localization process. The cytosolic domain of furin is necessary and sufficient for TGN localization, and two signals are responsible for retrieval of furin to the TGN. A tyrosine-based (YKGL) motif mediates internalization of furin from the cell surface into endosomes. An acidic cluster that is part of two casein kinase II phosphorylation sites (SDSEEDE) is then responsible for retrieval of furin from endosomes to the TGN. In addition, the acidic EEDE sequence also mediates endocytic activity. Here, we analyzed the sorting of furin in polarized epithelial cells. We show that furin is delivered to the basolateral surface of MDCK cells, from where a significant fraction of the protein can return to the TGN. A phenylalanine-isoleucine motif together with the acidic EEDE cluster is required for basolateral sorting and constitutes a novel signal regulating intracellular traffic of furin.  相似文献   
67.
The Golgi-localized, gamma-adaptin ear-containing, ARF-binding (GGA) proteins are monomeric clathrin adaptors that mediate the sorting of cargo at the trans-Golgi network and endosomes. The GGAs contain four different domains named Vps27, Hrs, Stam (VHS); GGAs and TOM1 (GAT); hinge; and gamma-adaptin ear (GAE). The VHS domain recognizes transmembrane cargo, whereas the hinge and GAE regions bind clathrin and accessory proteins, respectively. The GAT domain is a polyfunctional module that interacts with various partners including the small GTPase ARF, the endosomal fusion regulator Rabaptin-5, ubiquitin, and the product of the tumor susceptibility gene 101 (TSG101). Previous x-ray crystallographic analyses showed that the GAT region is composed of two subdomains, an N-terminal helix-loop-helix containing the ARF binding site, and a C-terminal triple alpha-helical (trihelical) bundle. In this study, we define the Rabaptin-5 binding site on the GGA1-GAT domain and its relationship to the binding sites for ubiquitin and TSG101. Our observations show that Rabaptin-5, ubiquitin, and TSG101 bind to overlapping but distinct binding sites on the trihelical bundle. The different GAT binding partners engage in both competitive and cooperative interactions that may be important for the function of the GGAs in protein sorting.  相似文献   
68.
Bonifacino JS  Jackson CL 《Cell》2003,112(2):141-142
ARF GTPases act at multiple steps of the secretory and vacuolar/lysosomal trafficking pathways, but little is known about the spatial regulation of ARF activation. In this issue of Cell, Geldner et al. demonstrate that the Arabidopsis ARF activator GNOM localizes to endosomes where it controls the polarized trafficking of the auxin efflux carrier PIN1 to the basal plasma membrane.  相似文献   
69.
Phosphorylation of the cytosolic tails of transmembrane receptors can regulate their intracellular trafficking. The structural basis for such regulation, however, has not been explained in most cases. The cytosolic tail of the cation-independent mannose 6-phosphate receptor contains a serine residue within an acidic-cluster dileucine signal that is important for the function of the receptor in the biosynthetic sorting of lysosomal hydrolases. We show here that phosphorylation of this Ser enhances interactions of the signal with its recognition module, the VHS domain of the GGA proteins. Crystallographic analyses demonstrate that the phosphoserine residue interacts electrostatically with two basic residues on the VHS domain of GGA3, thus providing an additional point of attachment of the acidic-cluster dileucine signal to its recognition module.  相似文献   
70.
The Eps15 homology (EH) domain-containing protein, EHD1, has recently been ascribed a role in the recycling of receptors internalized by clathrin-mediated endocytosis. A subset of plasma membrane proteins can undergo internalization by a clathrin-independent pathway regulated by the small GTP-binding protein ADP-ribosylation factor 6 (Arf6). Here, we report that endogenous EHD proteins, as well as transgenic tagged EHD1, are associated with long, membrane-bound tubules containing Arf6. EHD1 appears to induce tubule formation, which requires nucleotide cycling on Arf6 and intact microtubules. Mutations in the N-terminal P-loop domain or deletion of the C-terminal EH domain of EHD1 prevent association of EHD1 with tubules or induction of tubule formation. The EHD1 tubules contain internalized major histocompatibility complex class I (MHC-I) molecules that normally traffic through the Arf6 pathway. Recycling assays show that overexpression of EHD1 enhances MHC-I recycling. These observations suggest an additional function of EHD1 as a tubule-inducing factor in the Arf6 pathway for recycling of plasma membrane proteins internalized by clathrin-independent endocytosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号